Fundamental invariants of improper symplectic reflection groups

Tobias Metzlaff & Ulrich Thiel tobias.metzlaff@rptu.de

Notation

- \mathfrak{h} a \mathbb{C} -vector space of dimension n
- \mathfrak{h}^* the dual, that is, the linear maps $\mathfrak{h} \to \mathbb{C}$
- $\mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]$ the symmetric algebra of $\mathfrak{h}^* \oplus \mathfrak{h}$ \Rightarrow after choosing a basis for \mathfrak{h} : $\mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*] = \mathbb{C}[x_1 \dots x_n, y_1 \dots y_n] = \mathbb{C}[x, y]$
- $\mathcal{W} \subseteq GL(\mathfrak{h})$ a complex reflection group

Diagonal Invariants

 \mathcal{W} has a diagonal action on $\mathbb{C}[x,y]$ by

$$(A, f(x, y)) \mapsto A \star f(x, y) := f(Ax, (A^t)^{-1}y)$$

- $\mathbb{C}[x,y]^{\mathcal{W}}$ the polynomial invariants
- $\mathbb{C}(x,y)^{\mathcal{W}}$ the rational invariants, that is, the field of fractions of $\mathbb{C}[x,y]^{\mathcal{W}}$

Problem: As a \mathbb{C} -algebra, $\mathbb{C}[x,y]^{\mathcal{W}}$ is finitely generated. \Rightarrow How to compute the generators?

Motivation

• Classification of reflection groups: $\overline{\mathcal{W}}$ is a complex reflection group over \mathfrak{h} . $\Leftrightarrow \mathbb{C}[x]^{\mathcal{W}}$ is a polynomial ring. $\Leftrightarrow \mathfrak{h}/\mathcal{W} = \operatorname{Spec}(\mathbb{C}[x]^{\mathcal{W}})$ is smooth. However, \mathcal{W} represented over $\mathfrak{h} \oplus \mathfrak{h}^*$ as

$$\mathcal{W} \ni A \mapsto \begin{pmatrix} A & 0 \\ 0 & (A^t)^{-1} \end{pmatrix}$$

is NOT generated by reflections.
Instead, we have a symplectic form

$$((x,y),(x',y')) \mapsto y'(x) - y(x').$$

on $\mathfrak{h} \oplus \mathfrak{h}^*$ and $(\mathfrak{h} \oplus \mathfrak{h}^*)/\mathcal{W}$ is a singular symplectic variety, see [1, 2].

• Hamiltonian equations of motion: A Lie bracket on $\mathbb{C}[x,y]$ is defined by

$$(f,g) \mapsto \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial y_i} - \frac{\partial f}{\partial y_i} \frac{\partial g}{\partial x_i},$$

turning $\mathbb{C}[x,y]$ into the *Poisson algebra*.

References

- [1] A. Beauville (2000) Symplectic singularities. *Invent.* $Math.\ 139(3),\ 541-549$
- [2] G. Bellamy, J. Schmitt and U. Thiel (2022) Towards the classification of symplectic linear quotient singularities admitting a symplectic resolution. $Math.\ Z.\ 300(1),\ 661-681$
- [3] I. Gordon (2003) On the quotient ring by diagonal invariants. *Invent. Math.* 153, 503–518
- [4] M. Haiman (1994) Conjectures on the Quotient Ring by Diagonal Invariants. J. Alg. Comb. 3, 17–76
- [5] E. Hubert and I. Kogan (2007) Rational invariants of a group action. JSC 42(1–2), 203–217
- [6] E. Hubert and E. Rodriguez Bazan (2022) Algorithms for fundamental invariants and equivariants of finite groups. *Math. Comp.* 91(337), 2459–2488
- [7] A. Fässler and E. Stiefel (1992) Group Theoretical Methods and Their Applications. Birkhäuser, MA
- [8] J.-P. Serre (1977) Linear Representations of Finite Groups. In: *Grad. Texts Math.* Springer, NY

Acknowledgements

This work is supported by the DFG research centre SFB-TRR 195: Symb. Tools in Math. and their Application.

King's Algorithm

... computes the generators ("fundamental invariants") for $\mathbb{C}[V]^{\mathcal{W}}$, where V is a finite dimensional \mathcal{W} -module, for example $V = \mathfrak{h} \oplus \mathfrak{h}^*$.

Set $F:=\emptyset$, $G:=\emptyset$, \preceq the deg rev lex ordering on $\mathbb{C}[V]$. For $1\leq d\leq |\mathcal{W}|$ do:

- 1. $G := G \cup \{NF(h) | h = spoly(f, g), f, g \in G, \deg(h) = d\}.$
- 2. $M := \{x^{\alpha} \in \mathbb{C}[V] \mid |\alpha| = d, \ \forall g \in G : LM(g) \ does \ NOT \ divide \ x^{\alpha} \}.$
- 3. If $M = \emptyset$, stop.
- 4. For $t \in M$, set $f := \frac{1}{|\mathcal{W}|} \sum_{A \in \mathcal{W}} A \star t$.
- 5. If $NF(f) \neq 0$, add f to F, NF(f) to G.

F is a set of fundamental invariants for $\mathbb{C}[V]^{\mathcal{W}}$.

Degree Principles

A polynomial $f \in \mathbb{C}[x, y]$ has bidegree $\operatorname{Deg}(f) := (\deg_x(f), \deg_y(f)) \in \mathbb{N}^2$.

For
$$f(x,y) = \sum_{\alpha} c_{\alpha} p_{\alpha}(x) q_{\alpha}(y)$$
, set

$$\Psi(f)(x,y) := f(y,x) = \sum_{\alpha} c_{\alpha} p_{\alpha}(y) q_{\alpha}(x).$$

Theorem 1: The involution Ψ takes invariants to invariants: For $f \in \mathbb{C}[x,y]^{\mathcal{W}}$ with $\operatorname{Deg}(f) = (d,e)$, we have $\Psi(f) \in \mathbb{C}[x,y]^{\mathcal{W}}$ and $\operatorname{Deg}(\Psi(f)) = (e,d)$.

Theorem 2: There is a system F of fundamental invariants for $\mathbb{C}[x,y]^{\mathcal{W}}$ with $\Psi(F)=F$.

Improving on King's

• $d \leq |\mathcal{W}|$ is suboptimal: It suffices to take

$$d \le \inf \left\{ k \in \mathbb{N} \mid \mathbb{C}[x, y] = \langle \bigoplus_{\ell=0}^k \mathbb{C}[x, y]_\ell \rangle \right\}.$$

Compute this bound efficiently.

- Exploit known results on the coinvariants $\mathbb{C}[x,y]/I$, where I is the ideal generated by the invariants without constant term [3, 4].
- Compute diagonal polynomial invariants from rational invariants [5].
- Exploit the symmetry given by the Degree Principles: King's Algorithm does NOT do that (see Example).
- King's algorithm is based on Gröbner bases. Symmetry adapted bases and H-bases [6, 7, 8] on the other hand preserve symmetry.

Relative Invariants

Given a character $\chi: \mathcal{W} \to \mathbb{C} \setminus \{0\}$, we call $f \in \mathbb{C}[x,y]$ a relative invariant, if, for all $A \in \mathcal{W}$, we have $A \star f = \chi(A) f$. We denote this by $f \leftrightarrow \chi$.

Theorem 3: For $f \leftrightarrow \chi$, there exists $f^* \in \mathbb{C}[x,y]$ with $f^* \leftrightarrow \chi^{-1}$ and $\mathrm{Deg}(f) = \mathrm{Deg}(f^*)$.

For $\chi = 1$, this is Theorem 1.

Example

Let $a \in \mathbb{C}$ with $a^2 + a + 1 = 0$, that is, $a^3 = 1$. We consider the complex reflection group $\mathcal{W} := G_4$ (in the Shephard-Todd-classification), which is the group generated over $\mathfrak{h} := \mathbb{C}^2$ by the matrices

$$A_1 = \begin{pmatrix} a & 0 \\ -a - 1 & 1 \end{pmatrix} \quad \text{and} \quad A_2 = \begin{pmatrix} 1 & a + 1 \\ 0 & a \end{pmatrix}.$$

The group W has order 24 and any minimal set of fundamental invariants for $\mathbb{C}[x]^{W}$ consists of 2 algebraically independent generators.

However, this is not true for $\mathbb{C}[x,y]^{\mathcal{W}}$: With King's algorithm, one obtains 8 fundamental invariants

$$f_1 = x_1 \, y_1 + x_2 \, y_2$$

$$f_2 = y_1 y_2 (y_1^2 - y_2^2 + (2 a + 1) y_1 y_2)$$

$$f_3 = (x_1^2 - x_2^2) (x_1^2 - x_2^2 + 4/3 (2 a + 1) x_1 x_2)$$

$$f_4 = x_1 y_1^3 + x_2 y_2^3 - 3(x_2 y_1 + x_1 y_2) + (2a + 1) y_1 y_2 (x_1 y_1 - x_2 y_2) - (2a + 1) (x_1 y_2^3 - x_2 y_1^3)$$

$$f_5 = x_1^3 y_1 + x_2^3 y_2 - 3(x_2 y_1 + x_1 y_2) + (4a + 2) x_1 x_2 (x_1 y_1 - x_2 y_2)$$

$$f_6 = x_1^6 + x_2^6 + (4a + 2) x_1 x_2 (x_1^4 - x_2^4) - 5 x_1^2 x_2^2 (x_1^2 + x_2^2)$$

$$f_7 = y_1^6 + y_2^6 + (4a + 2) y_1 y_2 (y_1^4 - y_2^4) - 5 y_1^2 y_2^2 (y_1^2 + y_2^2)$$

$$f_8 = x_1^3 y_2^3 - x_2^3 y_1^3 - (2a+1) (x_1 y_1 - x_2 y_2) (x_1^2 y_2^2 - x_2^2 y_1^2) - (x_1 y_2 - x_2 y_1) (x_1^2 y_1^2 + x_2^2 y_2^2 - 3x_1 x_2 y_1 y_2),$$

forming a system F of fundamental invariants and ordered by their bidegrees

$$Deg(F) = \{(1,1), (0,4), (4,0), (1,3), (3,1), (0,6), (6,0), (3,3)\}.$$

We observe that $\operatorname{Deg}(F) \subseteq \mathbb{N}^2$ is \mathfrak{S}_2 -symmetric. We have

$$\Psi(f_1) = f_1, \Psi(f_6) = f_7, \Psi(f_8) = -f_8.$$